مدونة تعليمية

منصة موارد تعليمية متنوعة

1 Bac S F

1er BAC S Biof
Cours
Exercices
Contrôles
Page principale
موقع للفيزياء والكيمياء
un exercice de la quantité de matière
On trouve la caféine C8H10N4O2 dans le café, le thé, le chocolat et quelques boissons gazeuses. C’est une matière excitante qui peut empoisonner, si la quantité consommée dépasse 600mg par jour : 1- Calculer la messe molaire de la caféine, 2- Calculer les pourcentages massiques de tous les éléments chimiques qui constituent la caféine, 3- Calculer la quantité de matière de la caféine contenue dans une tasse de café dont m=80mg de caféine, 4- Déduire le nombre de molécules de la caféine dans la tasse de café, 5- Combien de tasses de café peut-on consommer par jour sans crainte d’empoisonnement par la caféine ?
un autre exercice de la quantité de matière
Un flacon de volume V = 0,75L de propanol C3H8O. Le volume molaire gazeux vaut VM = 25L/mol : 1- Calculer la masse molaire de ce gaz, 2- Calculer le nombre de molécules contenues dans ce flacon, 3- Calculer la pression de ce gaz dans le flacon et calculer sa masse dans ce flacon, 4- En déduire la masse volumique de ce gaz, 5- Donner l’expression de la densité de ce gaz, puis calculer sa valeur, On donne : M(H)=1g/mol , M(C)=12g/mol , M(O)=16g/mol, T=15°C, air=1,225Kg/m3, R=8,314J.mol-1.K-1.
équivalent.















     SpBiof     
موقع للفيزياء والكيمياء

للأستاذ محمد عمراوي 

 Série des exercices

des transformations nucléaires

 décroissance radioactive

 SP SVT SM Biof

format pdf

format word


La page principale

Série de décroissance radioactive 
SP SVT SM Biof
Exercice 1 :

Au cours d’une expérience visant à estimer le volume moyen V de sang contenu dans un corps humain, on injecte une petite quantité d’une solution de substance radioactive (Thallium ) dans le sang d’un patient.

On fait l’hypothèse que, en quelques heures, cette solution diffuse de manière homogène dans tout le volume sanguin. L’activité Ao de la solution radioactive introduite est égale à 960 kBq. La demi-vie de la substance radioactive est de 7,5 heures. 15 heures après l’injection, on mesure l’activité A' d’un prélèvement sanguin de volume V' = 10 mL : on obtient une valeur de 480 Bq.

1-      Comment est définie l'activité d'un échantillon radioactif ? Quelle est son unité ?

2-      Pourquoi diminue-t-elle au cours du temps ?

3-      Comment est définie la demi-vie d'une substance radioactive ?

4-      Déduis-en la valeur de l'activité résiduelle A1 de la totalité de la solution radioactive introduite dans le sang, 15 heures après l’injection,

5-      Pourquoi la valeur de A' est-elle différente de la valeur de A1 ?

6-      Déduis des données de l'énoncé le volume total de sang dans le corps humain,

7-      L'isotope du thallium utilisé ici est radioactif β+. Qu'est-ce que cela signifie ?

Ecris l'équation de la réaction de désintégration correspondante, en précisant les règles utilisées, en cherchant le symbole du noyau fils dans la classification périodique des éléments chimiques.
Exercice 2 :

L’iode 131  est radioactif b-. Il est utilisé à faible doses dans les applications médicales visant l’étude du dysfonctionnement de la thyroïde ou le traitement de certaines maladies liées à cette glande.

La désintégration d’un noyau d’iode 131 produit un noyau  :

1-      Ecrire l’équation de désintégration de l’iode 131 en identifiant ,

2-      On injecte à un patient, à un instant choisi comme origine des dates, une dose d’une solution d’iode 131 dont l’activité à cet instant est a0. La courbe de la figure ci-contre représente les variations de l’activité a(t) de cette dose en fonction du temps : 

a-      Déterminer graphiquement la demi-vie t1/2 et la constante de temps τ de l’iode 131,

b-      Calculer la valeur de λ la constante radioactive de l’iode 131,

c-      Calculer le nombre N0 de noyau d’iode présents dans la dose à t=0s,

d-      En utilisant la loi de décroissance radioactive, déterminer, en jours, t1 ou 95% des noyaux d’iode 131 se sont désintégrés.

Exercice 3 :

Le polonium 210  est radioactif α, sa désintégration conduit à la formation d’un isotope de plomb . La constante radioactive du polonium  est λ= 5,023.10-3 𝑗𝑜𝑢𝑟𝑠-1 :

1-      Ecrire l’équation de désintégration de , en précisant A et Z en basant sur les lois de Soddy,

2-      Calculer sa demi-vie t1/2 du polonium  et sa constante de temps τ,

3-      Sachant que l’activité initiale de l’échantillon de polonium 210 est a0=1010Bq. Calculer le nombre de noyaux radioactifs N0 dans l’échantillon à l’instant initial,

4-      Déterminer la durée nécessaire pour que l’activité de l’échantillon soit égale à a0/4,

Exprimer le rapport  en fonction de t et t1/2, calculer r pour t=1jour.
Exercice 4 :

La datation par le carbone 14 est parmi les techniques adoptées par les savants pour déterminer l’âge de quelques fossiles et roches. La teneur en ce carbone reste constante dans l’atmosphère et dans les êtres vivants, mais commence à diminuer juste après la mort de ces derniers à cause de la radioactivité.

Données : La demi-vie du carbone 14 : t1/2 = 5570ans.

De la radioactivité spontanée du nucléide carbone , résulte l’azote :

1-      Ecrire l’équation de cette désintégration en précisant le type de la radioactivité,

2-      Calculer λ la constante radioactive du carbone 14 et sa constante du temps τ,

3-      Donner la composition du noyau fils,

4-      Les archéologues ont trouvé une statue en bois d’activité 135 Bq. Sachant que l’activité d’un morceau de bois récent, de même masse et de même nature que bois de la statue, est 165 Bq :

a-      Préciser numériquement a0 et a(t),

Déterminer, en années, l’âge approximatif de la statue en bois.

Exercice 6 :

Le chlore 36  est créé régulièrement dans la haute atmosphère et se trouve dans l’eau. Il est radioactif β. Les eaux de surface ont une teneur en chlore 36 constante malgré sa radioactivité. Leur contact avec l’atmosphère et les mouvements de l’eau permettent d’en garantir la teneur. Les nappes phréatiques d’écoulement lent en sous - sol voient leur teneur en chlore 36 diminuer. Ainsi, un forage réalisé dans une telle nappe indique que celle - ci ne contient plus que 33% de chlore 36 par rapport à une eau courante. La demi-vie du chlore 36 est t1/2 = 301.103ans. Le (Cl-36) se désintègre en « argon 36 » (Ar-36) :

1-      Écrire l’équation nucléaire de radioactivité du chlore 36,

2-      Calculer λ la constante radioactive du potassium 40, en ans-1 puis en s-1,

3-      Donner la loi de décroissance radioactive du potassium 40,

Calculer l’âge de la nappe d’eau trouver par forage,

Exercice 9 :

L’astate 211, radio émetteur α, est utilisé en médecine nucléaire, pour diagnostiquer et suivre l’évolution de quelques tumeurs cancéreuses. La radioactivité de ce noyau donne naissance à un noyau de Bismuth  La courbe de la figure ci-contre représente les variations de Ln(N) en fonction du temps. N : Nombre de noyaux d’Astate 211 restants à l’instant t.

1-      Écrire l’équation de la désintégration de , en précisant x et y,

2-      Donner la composition du noyau de Bismuth résultant,

3-      Calculer le nombre N0 de noyau de l’Astate 211 présents à t=0s,

4-      Déterminer la valeur de la demi-vie t1/2 de l’Astate 211,

5-      Calculer a(t=3h) l’activité des nucléides restent de l’Astate 211 à t=3h,

6-      Déduire la valeur de la constante radioactive λ et celle de constante du temps τ de l’Astate 211,

7-      Donner la loi de la désintégration de l’Astate 211,

Redéduire τ la constante de temps de l’Astate 211 graphiquement.

https://spbiof.blogspot.com/




TCS Biof

TCS Biof
Cours
Exercices
Contrôles
Page principale
موقع للفيزياء والكيمياء
un exercice de la quantité de matière
un vinaigre de 6° contient d’acide acétique "C" _"2" "H" _"4" "O" _"2" 1. Calculer la quantité d’acide acétique contenu dans 100 g de vinaigre à 6 °. 2. Calculer le volume V d’acide acétique contenu dans 100 g de ce vinaigre. Donnée : masse volumique de l’acide acétique : = 1,05 kg / L.
un autre exercice de la quantité de matière
L’oxyde d’azote N2O est utilisé comme gaz anesthésiant en chirurgie ou comme propulseur dans les bombes aérosol. Le volume molaire gazeux est VM= 24,0 L/mol : 1- Quelle est la masse molaire de l’oxyde d’azote ? 2- Quelle quantité de matière contient un volume V = 100,0 mL de ce gaz, 3- Déduire le nombre des molécules d’oxyde d’azote, puis calculer la masse de 10,0 mL de ce gaz.
équivalent.















     SpBiof     
موقع للفيزياء والكيمياء

للأستاذ محمد عمراوي 

 Série des exercices

des transformations nucléaires

 décroissance radioactive

 SP SVT SM Biof

format pdf

format word


La page principale

Série de décroissance radioactive 
SP SVT SM Biof
Exercice 1 :

Au cours d’une expérience visant à estimer le volume moyen V de sang contenu dans un corps humain, on injecte une petite quantité d’une solution de substance radioactive (Thallium ) dans le sang d’un patient.

On fait l’hypothèse que, en quelques heures, cette solution diffuse de manière homogène dans tout le volume sanguin. L’activité Ao de la solution radioactive introduite est égale à 960 kBq. La demi-vie de la substance radioactive est de 7,5 heures. 15 heures après l’injection, on mesure l’activité A' d’un prélèvement sanguin de volume V' = 10 mL : on obtient une valeur de 480 Bq.

1-      Comment est définie l'activité d'un échantillon radioactif ? Quelle est son unité ?

2-      Pourquoi diminue-t-elle au cours du temps ?

3-      Comment est définie la demi-vie d'une substance radioactive ?

4-      Déduis-en la valeur de l'activité résiduelle A1 de la totalité de la solution radioactive introduite dans le sang, 15 heures après l’injection,

5-      Pourquoi la valeur de A' est-elle différente de la valeur de A1 ?

6-      Déduis des données de l'énoncé le volume total de sang dans le corps humain,

7-      L'isotope du thallium utilisé ici est radioactif β+. Qu'est-ce que cela signifie ?

Ecris l'équation de la réaction de désintégration correspondante, en précisant les règles utilisées, en cherchant le symbole du noyau fils dans la classification périodique des éléments chimiques.
Exercice 2 :

L’iode 131  est radioactif b-. Il est utilisé à faible doses dans les applications médicales visant l’étude du dysfonctionnement de la thyroïde ou le traitement de certaines maladies liées à cette glande.

La désintégration d’un noyau d’iode 131 produit un noyau  :

1-      Ecrire l’équation de désintégration de l’iode 131 en identifiant ,

2-      On injecte à un patient, à un instant choisi comme origine des dates, une dose d’une solution d’iode 131 dont l’activité à cet instant est a0. La courbe de la figure ci-contre représente les variations de l’activité a(t) de cette dose en fonction du temps : 

a-      Déterminer graphiquement la demi-vie t1/2 et la constante de temps τ de l’iode 131,

b-      Calculer la valeur de λ la constante radioactive de l’iode 131,

c-      Calculer le nombre N0 de noyau d’iode présents dans la dose à t=0s,

d-      En utilisant la loi de décroissance radioactive, déterminer, en jours, t1 ou 95% des noyaux d’iode 131 se sont désintégrés.

Exercice 3 :

Le polonium 210  est radioactif α, sa désintégration conduit à la formation d’un isotope de plomb . La constante radioactive du polonium  est λ= 5,023.10-3 𝑗𝑜𝑢𝑟𝑠-1 :

1-      Ecrire l’équation de désintégration de , en précisant A et Z en basant sur les lois de Soddy,

2-      Calculer sa demi-vie t1/2 du polonium  et sa constante de temps τ,

3-      Sachant que l’activité initiale de l’échantillon de polonium 210 est a0=1010Bq. Calculer le nombre de noyaux radioactifs N0 dans l’échantillon à l’instant initial,

4-      Déterminer la durée nécessaire pour que l’activité de l’échantillon soit égale à a0/4,

Exprimer le rapport  en fonction de t et t1/2, calculer r pour t=1jour.
Exercice 4 :

La datation par le carbone 14 est parmi les techniques adoptées par les savants pour déterminer l’âge de quelques fossiles et roches. La teneur en ce carbone reste constante dans l’atmosphère et dans les êtres vivants, mais commence à diminuer juste après la mort de ces derniers à cause de la radioactivité.

Données : La demi-vie du carbone 14 : t1/2 = 5570ans.

De la radioactivité spontanée du nucléide carbone , résulte l’azote :

1-      Ecrire l’équation de cette désintégration en précisant le type de la radioactivité,

2-      Calculer λ la constante radioactive du carbone 14 et sa constante du temps τ,

3-      Donner la composition du noyau fils,

4-      Les archéologues ont trouvé une statue en bois d’activité 135 Bq. Sachant que l’activité d’un morceau de bois récent, de même masse et de même nature que bois de la statue, est 165 Bq :

a-      Préciser numériquement a0 et a(t),

Déterminer, en années, l’âge approximatif de la statue en bois.

Exercice 6 :

Le chlore 36  est créé régulièrement dans la haute atmosphère et se trouve dans l’eau. Il est radioactif β. Les eaux de surface ont une teneur en chlore 36 constante malgré sa radioactivité. Leur contact avec l’atmosphère et les mouvements de l’eau permettent d’en garantir la teneur. Les nappes phréatiques d’écoulement lent en sous - sol voient leur teneur en chlore 36 diminuer. Ainsi, un forage réalisé dans une telle nappe indique que celle - ci ne contient plus que 33% de chlore 36 par rapport à une eau courante. La demi-vie du chlore 36 est t1/2 = 301.103ans. Le (Cl-36) se désintègre en « argon 36 » (Ar-36) :

1-      Écrire l’équation nucléaire de radioactivité du chlore 36,

2-      Calculer λ la constante radioactive du potassium 40, en ans-1 puis en s-1,

3-      Donner la loi de décroissance radioactive du potassium 40,

Calculer l’âge de la nappe d’eau trouver par forage,

Exercice 9 :

L’astate 211, radio émetteur α, est utilisé en médecine nucléaire, pour diagnostiquer et suivre l’évolution de quelques tumeurs cancéreuses. La radioactivité de ce noyau donne naissance à un noyau de Bismuth  La courbe de la figure ci-contre représente les variations de Ln(N) en fonction du temps. N : Nombre de noyaux d’Astate 211 restants à l’instant t.

1-      Écrire l’équation de la désintégration de , en précisant x et y,

2-      Donner la composition du noyau de Bismuth résultant,

3-      Calculer le nombre N0 de noyau de l’Astate 211 présents à t=0s,

4-      Déterminer la valeur de la demi-vie t1/2 de l’Astate 211,

5-      Calculer a(t=3h) l’activité des nucléides restent de l’Astate 211 à t=3h,

6-      Déduire la valeur de la constante radioactive λ et celle de constante du temps τ de l’Astate 211,

7-      Donner la loi de la désintégration de l’Astate 211,

Redéduire τ la constante de temps de l’Astate 211 graphiquement.

https://spbiof.blogspot.com/




Page principale enceinte

TCS Biof
Cours
Exercices
Contrôles
1er BAC S Biof
Cours
Exercices
Contrôles
الجدع المشترك خيار عربية
الفروض
التمارين
الدروس
Page principale
موقع للفيزياء والكيمياء
un exercice d'un dipôle actif
La tension mesurée aux bornes d'un générateur à vide est E0 = 36 V. Lorsqu'il débite dans une charge un courant d'intensité I = 5 A, la tension baisse et devient U = 35 V : 1- Donner la relation liant U, E0, I et la résistance interne r, 2- Calculer r la résistance interne du générateur, 3- On branche aux bornes du générateur un conducteur ohmique D de résistance R. il est traversé par un courant de l’intensité est : I = 10 A : a- Donner le schéma de montage, b- Calculer la tension U aux bornes de conducteur ohmique D, c- En déduire la valeur de R. 4- Tracer les caractéristiques des deux dipôles sur le même graphe, 5- Donner les coordonnées de point de fonctionnement de ce circuit électrique par deux méthodes.
un autre exercice d'un dipôle actif
La caractéristique d’une pile de f.é.m. E et de résistance interne r passe par les deux points A (3,9V ;0,3A) et B (3,5V ; 0,5A) : 1- Ecrire l’expression de la tension UPN aux bornes de la pile lorsqu’elle débite un courant d’intensité I, 2- En déduire la valeur de E et de r, puis calculer Icc l’intensité de courant de court-circuit, 3- Calculer l’intensité I du courant lorsque la tension aux bornes de la pile est UPN=2,5V, 4- On associe en série N piles identiques caractérisée chacune par sa f.é.m. E0= 4,5 V et sa résistance interne r0=1,5. Le générateur équivalent a pour f.é.m. E=18,0V : a- Calculer le nombre N des piles associées en série, b- Calculer la résistance r du générateur équivalent, c- Ces N piles montées en série sont branchées aux bornes d’un conducteur ohmique de résistance R= 50 : 1er- Faire un schéma du montage, 2e- Calculer l’intensité I du courant dans le circuit de générateur équivalent.















     SpBiof     
موقع للفيزياء والكيمياء

للأستاذ محمد عمراوي 

 Série des exercices

des transformations nucléaires

 décroissance radioactive

 SP SVT SM Biof

format pdf

format word


La page principale

Série de décroissance radioactive 
SP SVT SM Biof
Exercice 1 :

Au cours d’une expérience visant à estimer le volume moyen V de sang contenu dans un corps humain, on injecte une petite quantité d’une solution de substance radioactive (Thallium ) dans le sang d’un patient.

On fait l’hypothèse que, en quelques heures, cette solution diffuse de manière homogène dans tout le volume sanguin. L’activité Ao de la solution radioactive introduite est égale à 960 kBq. La demi-vie de la substance radioactive est de 7,5 heures. 15 heures après l’injection, on mesure l’activité A' d’un prélèvement sanguin de volume V' = 10 mL : on obtient une valeur de 480 Bq.

1-      Comment est définie l'activité d'un échantillon radioactif ? Quelle est son unité ?

2-      Pourquoi diminue-t-elle au cours du temps ?

3-      Comment est définie la demi-vie d'une substance radioactive ?

4-      Déduis-en la valeur de l'activité résiduelle A1 de la totalité de la solution radioactive introduite dans le sang, 15 heures après l’injection,

5-      Pourquoi la valeur de A' est-elle différente de la valeur de A1 ?

6-      Déduis des données de l'énoncé le volume total de sang dans le corps humain,

7-      L'isotope du thallium utilisé ici est radioactif β+. Qu'est-ce que cela signifie ?

Ecris l'équation de la réaction de désintégration correspondante, en précisant les règles utilisées, en cherchant le symbole du noyau fils dans la classification périodique des éléments chimiques.
Exercice 2 :

L’iode 131  est radioactif b-. Il est utilisé à faible doses dans les applications médicales visant l’étude du dysfonctionnement de la thyroïde ou le traitement de certaines maladies liées à cette glande.

La désintégration d’un noyau d’iode 131 produit un noyau  :

1-      Ecrire l’équation de désintégration de l’iode 131 en identifiant ,

2-      On injecte à un patient, à un instant choisi comme origine des dates, une dose d’une solution d’iode 131 dont l’activité à cet instant est a0. La courbe de la figure ci-contre représente les variations de l’activité a(t) de cette dose en fonction du temps : 

a-      Déterminer graphiquement la demi-vie t1/2 et la constante de temps τ de l’iode 131,

b-      Calculer la valeur de λ la constante radioactive de l’iode 131,

c-      Calculer le nombre N0 de noyau d’iode présents dans la dose à t=0s,

d-      En utilisant la loi de décroissance radioactive, déterminer, en jours, t1 ou 95% des noyaux d’iode 131 se sont désintégrés.

Exercice 3 :

Le polonium 210  est radioactif α, sa désintégration conduit à la formation d’un isotope de plomb . La constante radioactive du polonium  est λ= 5,023.10-3 𝑗𝑜𝑢𝑟𝑠-1 :

1-      Ecrire l’équation de désintégration de , en précisant A et Z en basant sur les lois de Soddy,

2-      Calculer sa demi-vie t1/2 du polonium  et sa constante de temps τ,

3-      Sachant que l’activité initiale de l’échantillon de polonium 210 est a0=1010Bq. Calculer le nombre de noyaux radioactifs N0 dans l’échantillon à l’instant initial,

4-      Déterminer la durée nécessaire pour que l’activité de l’échantillon soit égale à a0/4,

Exprimer le rapport  en fonction de t et t1/2, calculer r pour t=1jour.
Exercice 4 :

La datation par le carbone 14 est parmi les techniques adoptées par les savants pour déterminer l’âge de quelques fossiles et roches. La teneur en ce carbone reste constante dans l’atmosphère et dans les êtres vivants, mais commence à diminuer juste après la mort de ces derniers à cause de la radioactivité.

Données : La demi-vie du carbone 14 : t1/2 = 5570ans.

De la radioactivité spontanée du nucléide carbone , résulte l’azote :

1-      Ecrire l’équation de cette désintégration en précisant le type de la radioactivité,

2-      Calculer λ la constante radioactive du carbone 14 et sa constante du temps τ,

3-      Donner la composition du noyau fils,

4-      Les archéologues ont trouvé une statue en bois d’activité 135 Bq. Sachant que l’activité d’un morceau de bois récent, de même masse et de même nature que bois de la statue, est 165 Bq :

a-      Préciser numériquement a0 et a(t),

Déterminer, en années, l’âge approximatif de la statue en bois.

Exercice 6 :

Le chlore 36  est créé régulièrement dans la haute atmosphère et se trouve dans l’eau. Il est radioactif β. Les eaux de surface ont une teneur en chlore 36 constante malgré sa radioactivité. Leur contact avec l’atmosphère et les mouvements de l’eau permettent d’en garantir la teneur. Les nappes phréatiques d’écoulement lent en sous - sol voient leur teneur en chlore 36 diminuer. Ainsi, un forage réalisé dans une telle nappe indique que celle - ci ne contient plus que 33% de chlore 36 par rapport à une eau courante. La demi-vie du chlore 36 est t1/2 = 301.103ans. Le (Cl-36) se désintègre en « argon 36 » (Ar-36) :

1-      Écrire l’équation nucléaire de radioactivité du chlore 36,

2-      Calculer λ la constante radioactive du potassium 40, en ans-1 puis en s-1,

3-      Donner la loi de décroissance radioactive du potassium 40,

Calculer l’âge de la nappe d’eau trouver par forage,

Exercice 9 :

L’astate 211, radio émetteur α, est utilisé en médecine nucléaire, pour diagnostiquer et suivre l’évolution de quelques tumeurs cancéreuses. La radioactivité de ce noyau donne naissance à un noyau de Bismuth  La courbe de la figure ci-contre représente les variations de Ln(N) en fonction du temps. N : Nombre de noyaux d’Astate 211 restants à l’instant t.

1-      Écrire l’équation de la désintégration de , en précisant x et y,

2-      Donner la composition du noyau de Bismuth résultant,

3-      Calculer le nombre N0 de noyau de l’Astate 211 présents à t=0s,

4-      Déterminer la valeur de la demi-vie t1/2 de l’Astate 211,

5-      Calculer a(t=3h) l’activité des nucléides restent de l’Astate 211 à t=3h,

6-      Déduire la valeur de la constante radioactive λ et celle de constante du temps τ de l’Astate 211,

7-      Donner la loi de la désintégration de l’Astate 211,

Redéduire τ la constante de temps de l’Astate 211 graphiquement.

https://spbiof.blogspot.com/